Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling.
نویسندگان
چکیده
One of the most important fluid phenomena observed in the left ventricle during diastole is the presence of vortex rings that develop with a strong jet entering through the mitral valve. The present study is focused on the rapid filling phase of diastole, during which the left ventricle expands and receives blood through the fully open mitral valve. The atrioventricular system during the rapid filling phase was emulated experimentally with a simplified mechanical model in which the relevant pressure decay and the dimension of mitral annulus approximate the physiologic and pathologic values. Digital particle image velocimetry measurements were correlated with the force measurements on the mitral annulus plane to analyze the relation between flow and the mitral annulus motion. The recoil force on the displaced annulus plane was computed on the basis of plane acceleration and plane velocity and correlated with the inflow jet. Measurements of the recoil force for different values of the mitral annulus diameter showed that the recoil force was generated during fluid propulsion and that it is maximal for an annulus diameter close to the normal adult value in a healthy left ventricle. We also tested annulus diameters smaller and larger than the normal one. The smaller annulus corresponds to the stenotic valves and the larger annulus exists in dilated cardiomyopathy cases. In both conditions, the recoil force was found to be smaller than in the normal case. These observations are consistent with the previously reported results for dilated cardiomyopathy and mitral stenosis clinical conditions.
منابع مشابه
Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis
BACKGROUND LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis du...
متن کاملVortex ring mixing in the left ventricle of the human heart
Background During rapid filling of the left ventricle, a vortex ring forms downstream from the mitral valve. Previous experiments in water tanks have shown that vortex ring formation is an optimized method for fluid transport. The rotation of the vortex ring leads to mixing of the inflowing blood and blood that was already in the ventricle (Figure 1). In water tanks, the amount of mixing decrea...
متن کاملThree dimensional right ventricular diastolic vortex rings: characterization and comparison with left ventricular diastolic vortex rings from 4D flow MRI
Background Efficient right ventricular (RV) pumping function requires optimal blood flow dynamics. In the left ventricle (LV), diastolic vortex ring formation distal to the mitral valve (MV) has been reported to be an important mechanism for such blood flow optimization. Earlier work based on computational fluid dynamics (CFD) simulations using simplified RV geometry modeling have reported vort...
متن کاملLeft ventricular vortex formation is unaffected by diastolic impairment.
Normal left ventricular (LV) filling occurs rapidly early in diastole caused by a progressive pressure gradient within the ventricle and with a low left atrial pressure. This normal diastolic function is altered in patients with heart failure. Such impairment of diastolic filling is manifested as an abrupt deceleration of the early filling wave velocity. Although variations within the early fil...
متن کاملKheradvar_4631_r2_Layout 1
Background and aim of the study: The study aim was to determine the effect of mitral saddle annulus and leaflet length on peak leaflet stress and transmitral flow pattern when utilizing a novel bileaflet bioprosthetic valve. Methods: A novel valve, which closely mimics the saddle annulus motion of the mitral valve was developed. A series of computational analyses and in-vitro hemodynamic studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ASAIO journal
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2007